Instruction manual MASSIMOTTO SERIES CONTACTLESS SAFETY SENSOR FOR PROTECTORS / MACHINE DOORS

OTHER PRODUCTS : FORCE 0 AND IP 69K TOUCH PUSH BUTTON

COMITRONIC-BTI THE LEADER IN STAND-ALONE SAFETY SWITCHES

Safety contacts 2A/48V 2 million operations full load

Contactless safety sensor, without polarity, stand alone, with direct control of dangerous movement

CONTENTS

B10d: Beware of being trapped 3

1. Informations 3
1.1 "Reed contact" technology 3
1.2 ACOTOM® technology 3
Associated locking devices for guards: ISO 14119 4
2. The different locking devices according to ISO 14119 4
3. Comparative technologies 4
4. The process ACOTOM ${ }^{\circledR}$ 5
3.1. The birth of a revolutionary technology 5
3.2. Principle of the process $A C O T O M ® 3$ 5
3.3. Benefits of the process ACOTOM $® 3$ 5
MASSIMOTTO X5-485 6
5. Benefits 6
6. Features 6
7. Installation Principle for PLe/SIL3 with T-Splitter 7
8. Configuring a ModBus RTU network with two sensors 8
4.1 Request the status of a sensor 8
4.2 Change the address of a sensor 8
4.3 Reset a sensor 8
MASSIMOTTO X5.2 9
9. Benefits 9
10. Features 9
11. Installation Principle for PLd/SIL2 with Manual Reset 10
12. Installation Principle for PLd/SIL2 with automatic reset 10
MASSIMOTTO-X5 11
13. Benefits 11
14. Features 11
15. Installation Principle for PLd/SIL2 with Manual Reset 12
16. Installation Principle for PLd/SIL2 with Automatic Reset 12
17. ASSEMBLY INSTRUCTION 13
18. DIMENSIONS of sensors "X5-D" and "X5-485-D" 13
19. DIMENSIONS of sensors "X5-S" and "X5-485-S" 13
20. DIMENSIONS of sensors "X5.2-D" and "X5.2-S" 13
21. Recommendations 14
22. Periodic inspection 14
DECLARATION OF CONFORMITY 15

B10d : Beware of being trapped

1. Informations

For safety components with relay contact, the average time before dangerous failure (MTTFd) depends on the nature of the load to be switched. Software is used to assist in the development of the safety file. In no case can these software publish the said file, but rather they should be considered as "calculators of ISO 13849-1".

B10d value is to be listed with corresponding Load. In most cases, the manufacturers give a B10d for a low current, about 10 mA , the case of the reed switch for example. In reality, this current is much higher. If the value of the B10d is over 10 mA , it will be much lower at 100 mA and much too low at 1 A . In this case, MTTFd value will decrease strongly and the Performance Level of the installation will be compromised. The results published by some software are therefore to be taken with tweezers !

1.1 "reed contact" technology

The usual notation is B10d at 20% of the nominal current (In). If $\mathrm{In}=50 \mathrm{~mA}$, then B 10 d is given at 10 mA . This means that it is not possible to switch more than 10 mA by this component. Some software requires correction of this setting.
Before selecting a component, check that the nature of the load to be switched corresponds to 20\% of In.

1.2 ACOTOM ${ }^{\circledR}$ technology

The contacts relays of component X 5 have a breaking capacity of 8 A limited to $1 / 4$ of its value to avoid any risk of bonding. The value of the B10d is clearly displayed at 2 A load with 2000000 cycles. The user can recalculate this value if other load and switching frequency are used in his application.

The system ACOTOM® allowing direct control of power contactors.

[^0]
Associated locking devices for guards: ISO 14119

1. The different locking devices according to ISO 14119

Locking devices for dangerous machinery guards are subject to ISO 14119. There are three component technologies:

Technologies	Device	Power switch			Sensor		
		Roller	Hinge	key	Reed	ACOTOM®	RFID
1		X	X	X			
2	Magnetic				X	X	
3	Induction or RFID						X
Standard ISO 14119	Type	1	1	2	3	4	4

2. Comparative technologies

Product	Type	Level of coding	Method of mounting	Possibility of assembly			Direct control of movement	Agro compatible
				Summary	$\begin{aligned} & \text { Hid- } \\ & \text { den } \end{aligned}$	Embedded		
roller switch	1	None	Tamperproof screws or Removable screw	No	Yes	No	Yes	No
hinge switch	1	none		Yes	Yes	No	Yes	No
key switch	2	low		Subject to conditions	No	No	Yes	No
reed switch	3 or 4	low		Yes	Yes	No	No	low to high
ACOTOM® process	4	low to medium		Yes	Yes	Yes	Yes	high
induction sensor	3	low		Yes	No	No	Subject to conditions	No
transponder sensor	4	low to medium		Yes	No	No	Subject to conditions	No
RFID SENSOR	4	high		Yes	No	No	Subject to conditions	No

Notes: The sensor equipped with the process $A C O T O M{ }^{\Omega} 3$ is the only one that can be embedded in the door and in the frame, even if the material is stainless steel or aluminum. This makes the sensor totally invisible. Several forms of boxes are available, including an INOX M30 IP 69K version.
The sensor with the process $A C O T O M ®$ which is the only one that has a magnetic hold up to 4 Kg : this is the BOSTER.

Since 2006, some of our sensors have a screw cover for invisible mounting and additional protection.

Associated locking devices for guards: ISO 14119

3. The ACOTOM® process

3.1. The birth of a revolutionary technology

We put the first contactless encoded security sensor with a revolutionary process on the market in 1993. It uses a double-coded magnetic field and a diagnostic output, independent of the safety contacts, which traces the product's position. Today, this device is still leading thanks to many benefits that remain unmatched to date; it is called the "ACOTOM process®3".

3.2. Principle of the ACOTOM process ${ }^{\circledR} 3$

!!! SD: Safety distance !!! SD is the safety distance for the positioning of a door relative to the dangerous movement.

The system consists of:

- Two inviolable and independently coded magnetic field detectors (redundancy)
- A hysteresis control circuit at 2 mm
- A circuit that guarantees a distance of less than 14 mm , for the prevention of the passage of the fingers
- An automatic periodic safety check
- Protection of the safety contacts at $1 / 4$ of their breaking capacity to avoid any sticking
- An LED which indicates that the decoding is done, without any anomaly
- A diagnostic output that indicates an error or that the door is not in the closed position
- Serialization up to 65 sensors without loss of performance level
- Direct control of dangerous movement without using an intermediate safety box, with PL d and SIL 2.

3.3. Benefits of the ACOTOM®3 process

Criteria	Sensor with ACOTOM®3	Reed switch	Mechanical key switch	RFID sensor OSSD
Distance with ON action	8 mm	5 mm	5 mm	Depends on the envi- ronment $\sim 20 \mathrm{~mm}$
Distance with OFF action	10 mm	15 to 20 mm	10 mm	Depends on the envi- ronment $\sim 20 \mathrm{~mm}$
Direct drive of movement	Yes pilot duty $2 A / 50 V$ AC/DC	No	Yes pilot duty $2 A / 50 V$ AC/DC	Subject to conditions otherwise external safety module DC: $50 \mathrm{~mA} \mathrm{\sim 250mA}$
Independent diagnostic output	Yes + LED	No	No	Yes + LED
Tolerance to misalignment	High	Average (unsuitable for sliding doors)	Weak (risk of damage)	High
DS (indicative) Finger protection	490 mm No	330 mm	No	650 mm Possible

Contactless safety sensor, without polarity, for serialization of up to 30 plug \& play sensors: MASSIMOTTO-X5-485-S/D

Up to 30 sensors in series:
With external safety box $=$ PLe/SIL3 Without external safety box = PLd/SIL2 Example of a security box: AWAX26XXL

Special transmitter double-wing door

Special transmitter single-wing door

1. Benefits

- 1 to 30 machine guards in plug \& play connection thanks to the "T-Splitter"
- Invisible screws thanks to the screw covers
- Traceability/diagnostics on 2-wire Modbus RTU network
- Controls the opening of doors and movable guards on dangerous machines
- LED diagnostics: red = door open, green = door closed, orange = product or alignment fault
- Simple/fast/automatic/economical connection thanks to the T-Splitter
- Economical mounting for double-wing door with double transmitter: X5-485-D
- Economical mounting for single-wing door with single transmitter: X5-AR/SR-S
- Direct control of dangerous movement

2. Features

Power supply IEC 60204-1 : PELV/SELV	$\begin{aligned} & 24 \text { VAC -15\% / +10\% 50/60Hz } \\ & 24 \text { VDC -15\% / +10\% } \end{aligned}$
Operating current	50 mA (DC) / 115 mA (AC): maximum values
Protection Class	Protection II, Pollution 3
Room temperature	$-25^{\circ} \mathrm{C}$ to $+60^{\circ} \mathrm{C}\left(-13^{\circ}\right.$ to $\left.+140^{\circ} \mathrm{F}\right)$
Protection class rating	IP 67
Vibration resistance	$10 \sim 55 \mathrm{~Hz}, 1.5 \mathrm{~mm}$ double amplitude
Shock resistance	10 g
Frequency switching	$<2 \mathrm{~Hz}$
Response time	$<400 \mathrm{~ms}$ (Ton)
Risk period	<15 ms (Toff)
Safety line	AC1-AC15-DC13: 50 VAC/DC / 2 A (5 VDC/10 mA minimum)
Auxiliary output	NC: $24 \mathrm{~V} / 250 \mathrm{~mA}$ general use
Traceability	RS485: ModBus RTU 2-wire A + / B-
Detecting distance (mm) PA6 X PA6 Y PA6 Z Classification	$\begin{aligned} & \text { sao=15.7, sar=17.4 } \\ & \text { sao=13.1, sar=15.9 } \\ & \text { sao=8.7, sar=8.8 } \\ & \text { M3D25AU2 } \end{aligned}$
Weight	Transmitter: 66 g and Receiver: 150 g

25×25 aluminum profile aluminum profile 30×30 aluminum profile 35×35

Contactless safety sensor, without polarity, for serialization of up to 30 plug \& play sensors: MASSIMOTTO-X5-485-S/D

3. Installation Principle for PLe/SIL3 with T-Splitter

Contactless safety sensor, without polarity, for serialization of up to 30 plug \& play sensors: MASSIMOTTO-X5-485-S/D

4. Configuring a ModBus RTU network with two sensors

The network consists of the T-Splitter. It is necessary to address each sensor. The RS485 link is used to transmit the Modbus protocol and its setting is 9600 Bds without parity
a) Connect the first sensor: write address no. 1

- LED flashing: the sensor has no address
- Send the data frame

ID write map ID new validity

- The sensor sends the data frame: 000600010001 +CRC

000600010001 CRC16

- LED off: the address is saved
- Check when the door is open: LED is off
- Check when the door is closed: LED is on
b) Connect the second sensor: write address no. 2
- LED flashing: the sensor has no address
- Send the data frame
- Sensor response: 000600010002 +CRC

ID write map ID new validity 000600010002 CRC16

- LED off: the address is saved
- Check when the door is open: LED is off
- Check when the door is closed: LED is on

4.1 Request the status of a sensor: sensor status no. 1

The PLC cyclically scans the network devices The PLC sends the data frame.

ID read map word validity
Sensor response: door open 01020101 +CRC
010200010001 CRC16
Sensor response: door closed 01020100 +CRC

11. Change the address of sensor no. 2 and no. 3

- Send the data frame
- Sensor response: 020600010003 +CRC

ID write map ID new validity 020600010003 CRC16

4.3 Reset a sensor: return to factory settings

- Send the data frame

ID write map ID new validity

- Sensor response: 020600010000 +CRC

020600010000 CRC16

- Check that the sensor LED is flashing

Non-contact safety sensor, without polarity, serialized up to 30 sensors : MASSIMOTTO-X5.2

up to 30 sensors in series:
With external safety box = PLe / SIL3 Without external safety box = PLd / SIL2 Example of a safety box: AWAX26XXL

1. Benefits

- Manual reset input (AR version)
- Invisible screws with screw cover
- "Door open" diagnostic output
- LED diagnostics: orange = transmitter detected, operational product
- Controls the opening of doors and mobile protectors of dangerous machines
- Quick connection by M12 cable (FKT) and automatic series connection by M12 cable (FMKT)
- Economical installation for double door with dual transmitter: X5.2-AR / SR-D
- Economical installation for single-leaf doors with single transmitter: X5.2-AR / SR-S
- Direct control of dangerous movement

2. Specifications

Power supply IEC 60204-1 : PELV/SELV	24 VAC -15\% / +10\% 50/60Hz 24 VDC - 15% / +10\%
Operating current	50 mA (DC) / 115 mA (AC): maximum values
Protection Class	Protection II, Pollution 3
Room temperature	$-25^{\circ} \mathrm{C}$ to $+60^{\circ} \mathrm{C}\left(-13^{\circ}\right.$ to $\left.+140^{\circ} \mathrm{F}\right)$
Protection class rating	IP 67
Vibration resistance	$10 \sim 55 \mathrm{~Hz}, 1.5 \mathrm{~mm}$ double amplitude
Shock resistance	10 g
Frequency switching	$<2 \mathrm{~Hz}$
Response time	$<400 \mathrm{~ms}$ (Ton)
Risk period	$<15 \mathrm{~ms}$ (Toff)
Safety line	AC1-AC15-DC13: 50 VAC/DC / 2 A ($5 \mathrm{VDC} / 10 \mathrm{~mA}$ minimum)
Auxiliary output	NC: $\mathbf{2 4 - 1 / 2 5 0 ~ m A ~ g e n e r a l ~ u s e ~}$
Traceability	RS485: ModBus RTU 2-wire A + / B-
Detecting distance (mm) PA6 X PA6 Y PA6 Z	$\begin{aligned} & \text { sao=15.7, sar=17.4 } \\ & \text { sao=13.1, sar=15.9 } \\ & \text { sao=8.7, sar=8.8 } \end{aligned}$ M3D25AU2
Weight	Transmitter: 66 g and Receiver: 150 g

Aluminium profil 25×25 Aluminium profil 30×30 Aluminium profil 35×35

Non-contact safety sensor, without polarity, serialized up to 30 sensors : MASSIMOTTO-X5.2

3. Principle of a PLd / SIL2 installation with manual reset : X5.2-AR

4. Principle of a PLd / SIL2 installation with automatic reset: X5.2-SR

Non-contact safety sensor, without polarity MASSIMOTTO-X5

1. Benefits

- Manual pulse reset input (AR version)
- Invisible screws with screw cover
- "Door open" diagnostic output
- LED diagnostics: orange = transmitter detected, operational product
- Controls the opening of doors and mobile protectors of dangerous machines

Aluminium profil 25×25 Aluminium profil 30×30 Aluminium profil 35×35

- Quick connection by M12 cord (FKT)
- Economical installation for double door with dual transmitter: X5-AR / SR-D
- Economical mounting for single-wing door with single transmitter: X5-AR / SR-S
- Direct control of dangerous movement

2. Specifications

Power supply IEC 60204-1 : PELV/SELV	$\begin{aligned} & 24 \text { VAC -15\% / +10\% 50/60Hz } \\ & 24 \text { VDC -15\% / +10\% } \end{aligned}$
Operating current	50 mA (DC) / 115 mA (AC): maximum values
Protection Class	Protection II, Pollution 3
Room temperature	$-25^{\circ} \mathrm{C}$ to $+60^{\circ} \mathrm{C}\left(-13^{\circ}\right.$ to $\left.+140^{\circ} \mathrm{F}\right)$
Protection class rating	IP 67
Vibration resistance	$10 \sim 55 \mathrm{~Hz}, 1.5 \mathrm{~mm}$ double amplitude
Shock resistance	10 g
Frequency switching	$<2 \mathrm{~Hz}$
Response time	$<400 \mathrm{~ms}$ (Ton)
Risk period	<15 ms (Toff)
Safety line	AC1-AC15-DC13: 50 VAC/DC / 2 A ($5 \mathrm{VDC} / 10 \mathrm{~mA}$ minimum)
Auxiliary output	NC: $24 \mathrm{~V} / 250 \mathrm{~mA}$ general use
Traceability	RS485: ModBus RTU 2-wire A + / B-
Detecting distance (mm) PA6 X PA6 Y PA6 Z	$\begin{aligned} & \text { sao=15.7, sar=17.4 } \\ & \text { sao=13.1, sar=15.9 } \\ & \text { sao=8.7, sar=8.8 } \\ & \text { M3D25AU2 } \end{aligned}$
Weight	Transmitter: 66 g and Receiver: 150 g

.

3. Principle of a PLd / SIL2 installation with manual reset : X5-AR

4. Principle of a PLd / SIL2 installation with automatic reset : X5-SR

Mounting instruction MASSIMOTTO-X5 MASSIMOTTO-X5.2

5. Mounting instruction: see chapter 9

a) Drill the holes of the mounting bracket at $F=4.5 \mathrm{~mm}$, with a spacing of 64 mm
b) Preferably use our BH4 stainless steel screws (optional) for fastening
c) Insert the stainless steel washers supplied with the product
d) Once the door or casing is closed, the distance between the transmitter and the receiver must be at least 1 mm . This product must never be used as a mechanical stop
e) Our product can be concealed behind a wall (stainless steel, aluminum) of maximum 4 mm thickness
f) The radius of curvature of the cable shall be greater than 50 mm
g) Insert the screw cover
h) Connect the M12 cord (s)
i) Test assembly. Do a full test once a year and record the results.

6. Dimensions "X5-D" and "X5-485-D"

8. Dimensions "X5.2-D"

7. Dimensions "X5-S" and "X5-485-S"

Dimensions "X5.2-S"

Proof test MASSIMOTTO-X5 MASSIMOTTO-X5. 2

9. Recommendations

Protect the cable against external damage by using for example a mechanical shield (tube, mesh, etc.). Preserve a minimum gap between the transmitter and the receiver of at least 1 mm . These two parts must not be used as mechanical stops.
The device must be installed in such a way that it prevents the penetration of body parts such as fingers and hands.
The product must be installed in such a way that it can not be dismantled by normal tools. For this we can provide OBH4 tamper proof screws. The product can be concealed behind an aluminum or stainless steel wall up to 3 mm thick (3 mm on the transmitter side and 3 mm on the receiver side).

10. Periodic inspection

This product should be checked periodically once a year. To do this, simply execute a procedure and save the results in a form. The following points must be checked :

Example of an assembly on a door :

- Move the transmitter at 12 mm
- Observe that led goes out
- Check that contacts 1-6 and 2-7 are open
- X5: Check that contact 3 is closed
- X5.2 : Check that contact 3-8 is closed
- Approach the transmitter to 8 mm
- Observe that led lights up
- Check that contacts 1-6 and 2-7 are closed
- X5: Check that contact 3 is open
- X5.2 : Check that contact 3-8 is open
- Save the results in a form

11. Behavior of the product in case of failure

	Note	SR	AR	Contact 1-5	Contact 4-6	Contact 3	LED
	Entrée 8	Entrée 8		open	Light		
Transmitter active	Closed door	Closed	pulse $0-24 \mathrm{~V}-0$	Closed	Closed	op	Open
Transmitter inactive	Open door	X	X	open	Closed	Off	
Contact 1-5 stays close	Product defect	X	X	Closed	open	Closed	Off
Contact 4-6 stay closes	Product defect	X	X	open	Closed	Closed	Off
Entrée 8 stays open	Before start	0	0	open	open	Closed	Off

Note: When the product is in internal fault, it is imperative to replace it immediately.

C COMITRONIC - BTI

MANUFACTURER OF SAFETY MATERIAL 14 rue Pierre Paul de Riquet 33610 Canéjan
phone : +33 564100452
www.comitronic-bti.net

EU DECLARATION OF CONFORMITY

This document is the conformity declaration concerning safety switches and relays, conform to the Machine Directive 2006/42/CE,
EMC Directive 2014/30/UE, RoHS2 Directive 2011/65/EU
SAFETY SWITCHES

We hereby certify that the hereafter described safety components both in its basic design and construction conforms to the applicable European Directives.

Range	Classification IEC 60947-5-2	Safety Standards	Information	B10d	PFh	PFd
X5-AR-S/D	M3D2548AU2	$\begin{aligned} & \text { EN 62061 } \\ & \text { ISO 13849-1 } \\ & \text { IEC 60947-5-3 } \\ & \text { IEC 60204-1 } \\ & \text { ISO } 14119 \end{aligned}$	SIL 2 PL d PDDB PELV/SELV TYPE 4 low level	2000000	1,42 E-08	1,24 E-03
X5-SR-S/D						
X5.2-AR-S/D						
X5.2-SR-S/D						

\square

Note : All standards cover transmitter and receiver

Description :

Coded safety switch with process Acotom ${ }_{3}{ }^{\circledR}$ for detects the position of the doors. It can used without safety relay.

Person authorized for the compilation of the technical documentation :
Christophe PAYS
34 Allée du Closeau 93160 Noisy le Grand

Place and date of issue : Noisy, 29 june 2017
Authorised signature
Michel Conte
Director

COMITRONIC - BTI

14 Rue Pierre Paul de Riquet 33610 Canéjan +33564 100452
www.comitronic-bti.com

[^0]: The SYTCOM software: https://www.comitronic-bti.fr/en/sytcom is a calculator for ISO 13849-1

